Completing the spectrum of 2-chromatic S(2,4,v)

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completing the spectrum of 2-chromatic S(2, 4, v)

We construct 2-chromatic S(2; 4; v) for v = 37; 40, and 73. This completes the proof of the existence of 2-chromatic Steiner systems S(2; 4; v) [equivalently, of Steiner systems S(2; 4; v) with a blocking set] for all v ≡ 1 or 4 (mod 12).

متن کامل

The Chromatic Spectrum of Mixed Hypergraphs

A mixed hypergraph is a triple H = (X, C,D), where X is the vertex set, and each of C, D is a list of subsets of X. A strict k-coloring of H is a surjection c : X → {1, . . . , k} such that each member of C has two vertices assigned a common value and each member of D has two vertices assigned distinct values. The feasible set of H is {k : H has a strict k-coloring}. Among other results, we pro...

متن کامل

Gaps in the Chromatic Spectrum of Face-Constrained Plane Graphs

Let G be a plane graph whose vertices are to be colored subject to constraints on some of the faces. There are 3 types of constraints: a C indicates that the face must contain two vertices of a Common color, a D that it must contain two vertices of a Different color and a B that Both conditions must hold simultaneously. A coloring of the vertices of G satisfying the facial constraints is a stri...

متن کامل

The Chromatic Spectrum of a Ramsey Mixed Hypergraph

We extend known structural theorems, primarily a result of Axenovich and Iverson, for the strict edge colorings of the complete graph Kn which avoid monochromatic and rainbow triangles to discover recursive relationships between the chromatic spectra of the bihypergraphs modeling this coloring problem. In so doing, we begin a systematic study of coloring properties of mixed hypergraphs derived ...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2002

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(01)00308-9